
  

  

Abstract— The mineral separation efficiency of flotation 
process depends very much on the surface properties of 
feed ore and addition of chemical reagents. Machine 
vision based analysis of froth appearance is considered as 
an indication of flotation performance. Bubble structure 
obtained by watershed segmentation scheme is used to 
determine the amount of reagent. To explore bubble size 
distribution, nonparametric wavelet thresholding 
estimator is introduced to approximate the output 
Probability Density Function (PDF). With the aim of 
tracking the output PDFs to a target distribution shape, 
the output PDF model is therefore transformed into the 
dynamic weight coefficients model which allows a 
predicted reagent addition profile to be identified for 
controlling the flotation process. 
 

I. INTRODUCTION 
S the increasing consumption of the scarce mineral 

resource, flotation is becoming an indispensable 
technology to effectively utilize the low-graded ore 

resources. It aims to separate valuable minerals from useless 
materials or other minerals through complex physiochemical 
processes. By the addition of chemicals and mixture of air, 
valuable minerals are made hydrophobic in order to attach to 
the air bubbles, which rise up to the froth layer on the top of 
slurry where the upgraded valuable minerals are collected. 

It is well recognized that flotation process is a multivariate 
complex process influenced by various factors, and the 
control and modeling are very challenging. Currently, the 
manipulation of flotation process depends heavily on human 
operators to observe and interpret the visual appearance of the 
froth, so as to estimate the process condition using their 
experience in the field. This empirical approach is subjective, 
and prone to failure, mainly because the human vision is 
limited in terms of its distinguishing ability and accuracy. 
Recent advances in image processing and computer vision 
provide new opportunities to gain a better understanding of 
the industrial flotation process through monitoring froth 
appearances [1]. 

Numerous reported literatures focus their attention on the 
extraction techniques of froth features such as texture color 
[2], bubble size [3], froth speed [4] and bubble load [5]. It is 
believed that operating process status can be characterized by 
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bubble structure, which is used by human operators as 
heuristic knowledge. O’ Conner et al [6] reported that 
increase in pH causes bubble size to increase, consequently, 
the variance of bubble size has great effect on the probability 
of collision between mineral particles and bubbles, as well as 
the adhesion of these particles to the bubbles. Moolman [1] 
claimed that the result is consistent with the observation in the 
case of pyrite, and the mineral recovery decreased at higher 
pH. Approaches reported to segment the froth images and 
estimate bubble size, include white spots detection [7], 
watershed method [8], wavelet transformation [9], valley 
edge detection and their varieties [10]. Further analyses on the 
segmented froth images are confined to calculate average 
bubble size or determine other characteristics like mean, 
variance, kurtosis, and skewness, except that Liu described 
the size distribution by classifying them into three groups: 
large, middle and small size [9]. A more recent flotation 
control proposed by Liu is based on the wavelet size signature 
using linear scale continuous wavelet transform (CWT) [11]. 
Even though the size distribution is of great significance, the 
information indicated by statistical size distribution is far 
from fully utilized.  

Regarding the density distribution, nonparametric 
estimation is one of the core operations to analyze the 
unknown continuous process. Wavelet estimation tends to 
stand out other most commonly used methods such as 
histogram, kernel estimators for its ability to identify 
discontinuities as well as local oscillations [14].   

This work aims to thoroughly explore the froth structure by 
using wavelet-based density estimation technique to 
approximate the output probability density function (PDF) of 
bubble size distribution. Segmentation results of the on-line 
acquired froth images using the watershed method can 
subsequently be processed to estimate the PDF of bubble size 
distribution. By estimating the PDF of bubble size 
distribution, tracking of size density is reduced to monitoring 
the wavelet coefficients vector, which can directly be related 
to operational variables, such as chemical reagent addition. 
The next section introduces bubble characteristic oriented 
watershed segmentation scheme, Section 3 presents the 
nonparametric density estimation and nonlinear wavelet 
density estimators. Section 4 presents the experimental results 
and discussion. Conclusion is provided in the last section. 

II. FROTH SEGMENTATION 
The most important step in froth image analysis is to 

delineate every bubble. As mentioned earlier, the 
segmentation methodology varies from one to another. 
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Considering the characteristics of froth images collected from 
industry field, which show that: (1) a froth image is fully 
occupied by bubbles, in normal cases, without gaps or 
background region between bubbles; (2) the illumination on 
bubble surface is uneven; (3) each bubble has a convex shape 
which leads to the appearance of white spots, generally on the 
top if the incident ray is right from the vertical direction of 
froth layer; (4) edges between bubbles are weak, while edges 
caused by spot highlight are obvious; the edge between 
bubbles can hardly be detected by using classical edge 
detector. In contrast, the boundaries between bubbles are 
weak, with lower gradient magnitude, some of which are 
local minimum intensity of the cross section of froth images. 
A detection scheme, Valley Edge Detection based 
segmentation (VED) would be suitable to avoid strong edges 
around the white spots [10]. But its segmentation results will 
make the probability of size distribution not sum up to one, 
which limits its application in this work. Among the reported 
image segmentation methodologies, watershed method is 
another good alternative [8]. 

The idea of watershed is based on simulating water flows 
in a topographic representation of image intensity. As shown 
in Fig.1, a three dimensional landscape can describe the 
topography, which consists of valleys and hills, representing 
the lower and higher intensity of an image respectively. 
Suppose that a hole is punched in each regional minimum. Put 
the model into a lake. Then water is immersed from the 
bottom through the hole at a uniform rate. When two lakes 
meet, the watershed can be identified. The flooding will 
eventually be accomplished until the entire landscape has 
been fully immersed.    

The principal objective is to find the watershed lines where 
the borders separate valleys belonging to different local 
minima. Direct application of the watershed transform 
usually leads to oversegmentation. Marker-Controlled 
Watershed Segmentation is applied to solve the 

oversegmentation problem. A preprocessing step is 
incorporated by using makers bringing a priori knowledge 
before watershed transform. In practical setup, the spotlights 
reflected on each bubble are used as makers. The h-dome 
transform is used to extract light structures, i.e. regions of 
pixels which are brighter than their immediate surroundings. 
An h-dome D  of image X  is defined as a connected 
component of pixels such that every pixel p  that is a 
neighbor of D  satisfies: 

( ) min{ ( ) | }
max{ ( ) | } min{ ( ) | }
X p X q q D

X q q D X q q D h
< ∈⎧

⎨ ∈ − ∈ <⎩
        (1) 

Consequently, the value of a pixel p  in the h-dome D  is: 
 ( ) min{ ( ) | }X p X q q D− ∈                           (2) 

which means the pixel values are offset at the minimum 
intensity value of the h-dome. In fact, the h-dome extraction 
is based on a process called grey-scale reconstruction, which 
is implemented by using iterated grey-scale dilations and 
infimums. After the maker extraction, watershed 
segmentation can proceed automatically.  

Online videos and froth images with the size of 800×600 
are recorded by a RGB camera over the flotation rougher cell 
in a flotation industry field of China since July, 2008. The 
segmentation results of three typical images, which are 
collected under the same condition (resolution, angle, light 
condition, position, view scale, etc.) but at different time, are 
presented in Fig.2. For human vision, these images are 
visually discriminative in terns of color and bubble structure. 
The color textural information of bubbles in the rougher cell 

 
Fig. 1. Immersion from marked to non-marked area. 

 
(a) 

 
(b) 

 
(c) 

Fig.2 Segmentation results of typical froth images: (a) froth type 1, (b) 
froth type 2 and (c) froth type 3. 
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is directly related to the grade of ore feed, which is a dominant 
factor affecting the flotation performance. On the other hand, 
the bubble structures are an indication of chemical addition, 
which is determinant to mineral separation efficiency. Small 
bubbles with relative maximum surface area generally carry 
more valuable mineral particles, whose corresponding pH 
value is confined to an ideal bounded range (normally 
9.6~9.8). As is shown in Fig.2 (a), the froth structure is sticky 
and bubbles are averagely small and with spherical shapes. 
The calculated total bubble number is 836 with average area 
of 514 pixels, and its corresponding pH value is 9.75. The 
froth structure in Fig.2 (b) is mostly round and with large size. 
Due to the excessive addition of activator Na2Co3, pH value 
rose up to 10, far beyond the normal range. The calculated 
total bubble number is 439 with average area of 1009 pixels. 
In Fig.2(c), in the case of ore feed interrupting period; the 
flow rate of activator Na2Co3 was slowing down, therefore, 
the pH value decreased to about 9.45, lower than normal 
value; the calculated total bubble number is 544 with average 
area of 803 pixels .  

III. NONPARAMETRIC WAVELET ESTIMATION 
With the segmentation results obtained, the real-time data 

analysis and status monitoring is the next priority. 
Nonparametric density estimation has the desired property of 
capturing an unknown distribution of a continuous process, 
such as the segmentation results of the images for the bubble 
size distribution. 

To describe the dynamic stochastic process, let 
( ) ( , )y t a b∈  be the bounded output of the system the 

probability, ( ) mu t R∈  the control input dominating the 
output PDF shape of ( )y t . The conditional probability of 
output ( )y t  lying inside [ , ]a ξ  is defined as: 

( ( ) ) ( , ( ))
a

P a y t v u t dv
ξ

ξ γ≤ < = ∫                  (3) 

where ( , ( ))v u tγ  is the conditional output PDF. To 
approximate ( , ( ))v u tγ , many papers in literature have been 
devoted to the nonparametric estimation, including kernel 
methods, orthogonal methods, the histogram and their 
varieties [12]. More recently, Wang et al proposed the 
B-spline expansion models that successfully tracked the 
output PDFs to a target distribution shape by using various 
control approaches [13].  

Considering the characteristics of the size distribution of 
froth segmentation results, it is shown that the output PDF is 
smooth but with spikes, with an obvious long tail skewed to 
the left. Kernel methods generally tend to underestimate the 
peaks of discrete sampling density and so will bias the 
likelihood ratio [14]. Unlike other estimators, wavelets are 
orthogonal bases of function spaces with many appealing 
properties like representing the discontinuities, local 
oscillations and spikes. And it is reported that wavelet 
estimators tend to be superior to other estimation techniques 
[15].�

The basic scheme of wavelet expansion of the output 
probability density function ( )xγ  is: 

 
1 1

1

, , , ,( ) ( ) ( )j k j k j k j k
k j j k

x c x d xγ φ ψ
>

+∑ ∑∑∼            (4) 

where coefficients 
1 ,j kc  and ,j kd  are given as: 

1 1, , ( )j k j kc x dxφ γ
+∞

−∞
= ∫ , , , ( )j k j kd x dxψ γ

+∞

−∞
= ∫ . 

Wavelet basis is derived from the scaling function 
1 1

1

/ 2
, ( ) 2 (2 ),j j

j k x x k kφ φ= − ∈]  and the mother wavelet 
/ 2

, 1( ) 2 (2 ), ,j j
j k x x k k j jψ ψ= − ∈ >] , where j  is the 

resolution parameter, k  is the translation parameter. For 
general orthogonal series estimators, empirical wavelet 
coefficients can be formed as:  

1 1, ,
1

1ˆ ( )
n

j k j k i
i

c X
n

φ
=

= ∑                            (5) 

, ,
1

1ˆ ( )
n

j k j k i
i

d X
n

ψ
=

= ∑                           (6) 

Replace (4) with the unbiased estimate 
1 ,ˆ j kc  and ,

ˆ
j kd . 

Obviously ( )xγ  is approximated by a linear wavelet 
estimator, linear combinations of scaling function and mother 
wavelet. To automatically adapt to local features of a density, 
Donoho [16] developed nonlinear wavelet estimator by 
thresholding empirical coefficients 

, ,
ˆ( , ), ,j k j k j s hd dδ λ δ δ δ= =�                     (7) 

where , , ,
ˆ ˆ ˆ( , ) sgn ( )s j k j k j kd d dδ λ λ += − indicates soft 

thresholding shrinking large coefficients to zero, hard 
thresholding , , ,

ˆ ˆ ˆ( , ) { }h j k j k j kd d I dδ λ λ= >  sets coefficients 

with absolute value larger than λ  to zero. By choosing the 
appropriate thresholding parameter λ  for each resolution j . 
Then (4) becomes 

1 1
1

, , , ,( ) ( ) ( )j k j k j k j k
k j j k

x c x d xγ φ ψ
>

+∑ ∑∑ �� ∼            (8) 

It is shown in [16] that the convergence rate of nonlinear 
wavelet threshold estimators are generally faster than linear 
wavelet estimators. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In this work, near symmetric wavelets ‘sym4’ designed by 

Daubechies [17] is applied, which are compactly supported 
wavelets with least amount of asymmetry and highest number 
of vanishing moments for a given support width. Associated 
scaling filters are near linear-phase filters (shown in Fig.3). 

1j  is selected according to the regularity of the function, 

Fig.3 Scaling and wavelet function of ‘sym4’.  
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2 2log log (log )j n n= −⎢ ⎥⎣ ⎦ , and a scale dependent 

thresholding /j C j nλ =  with an appropriate constant C  is 
selected [16]. Take the segmented image Fig.2(c) as an 
example, the total number of bubbles are 544, with an average 
area 803 pixels (inside each bubble), the average length (in 
pixels) of the major axis of the ellipse is 42 and the average 
length (in pixels) of the minor axis of the ellipse is 24. A 
histogram with 64 bins is used. Nonparametric nonlinear 
wavelet estimator proposed in section 3 is then applied to 
approximate the size probability density, which is heavily 
skewed to the left. As is shown in Fig.4, the histogram display 

of froth image Fig.2(c) is illustrated, the red solid line 
represents the estimation result of wavelet expansion, which 
accurately approximates the size density distribution as 
expected. For comparison reason, the black dotted line shows 
the estimation result of kernel method applied on the 544 
bubble area distribution. Obviously, the wavelet estimator has 
done a better job when encountering the approximation of 
target curves with spikes and peaks. 

In Fig. 5, the bubble size mean 803 and the standard 
variance 627 of Fig.2(c) are used to plot the normal 
distribution. Apparently the bubble size distribution 
concerned is non-normal. Commonly used statistical 
characteristics like variance, kurtosis, and skewness are 
inaccurate features for bubble size distribution, except that 
mean is of value to some extent. The normal distribution 
described using a mean and standard deviation is, therefore, 
unable to accurately and fully describe the bubble size density. 
It is found that all the typical froth size distributions in rough 
cells tend to have a long tail with skewness to the left.  

Corresponding to the three segmented froth images in 
Fig.2, Fig.6 presents the three output PDF curves that were 
estimated by using the wavelet threshold estimators. The 
green curve related to sticky and small bubble image Fig.2 (a) 
denotes that most bubble size are under 1500, with a peak 
around area 300. The blue PDF curve of Fig.2 (b) has a heavy 
tail extended to 7000 pixels. The red PDF curve for Fig.2 (c) 
shows that the number of bubbles with area under 1000 is 
relatively the least, while the bubbles with area between 1000 
and 3000 are more than that of the ideal green curve of 
Fig.2(a). 

A Machine Vision based froth analyzer [10] consisting of a 
RGB camera, a lamp and a hook is installed above the surface 
of froth layer in the industry field, which provides the online 
acquisition of froth videos and images. Real time 
segmentation is carried out. Dynamic tracking of size 
distribution reflected by segmentation results is technically 
detective on line. Fig.7 gives a demonstration of real time 3-D 
mesh plot of output PDF. Therefore, the online monitoring of 
operational parameter and chemical addition can be 
accomplished by observing the real time variance of output 
PDFs distribution shape. By choosing appropriate wavelet 
bases, size density ( )xγ  is converted to description of a 

 Fig.4 Nonparametric estimation of bubble size density. 

Fig.5 Normal distribution regression. 

Fig.6 Wavelet estimation of three typical bubble size density. Fig.7 The 3-D mesh plot of the output PDF. 
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group of wavelet coefficients vectors. Define the dynamic 
wavelet coefficients vector as: 

( , ( ))V f V u t=  
In discrete system: 

1 ( , )k k kV f V u+ =  
where ku  is the control input of industry process. To track the 
output PDFs to a target distribution shape, various stochastic 
control approaches can be designed based on the dynamic 
coefficient vectors. 

V. CONCLUSION 
In this work, online acquisition of froth videos and images 

are made available by installing froth analyzer. Real time 
froth segmentation using watershed method is implemented 
in C language with a user interface. Statistic bubble size 
distribution is described by using non-linear wavelet 
threshold estimator to approximate the output PDFs. The 
monitoring of the process can be solved by transforming the 
problem of tracking output bubble size PDFs to the problem 
of tracking wavelet estimation coefficients vectors. Various 
stochastic control strategies can be designed based on the 
dynamic coefficient vectors to achieve a target PDF 
distribution shape.  
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